
AUDIT REPORT:

Audit of the CloakCoin PoSA3 implementation

Iain Craig <coldcity@gmail.com>, 28 July 2015

I. BACKGROUND

A majority of cryptocurrency implementations are open source, with the full codebase

publically available. It has been well documented that this allows for a highly effective peer

review process; to quote Eric S. Raymond, “given enough eyeballs, all bugs are shallow”1.

In the case of the CloakCoin codebase, it is not desired to fully disclose the source code at

this time, in order to prevent a commercial advantage being gained by competing “clone”

coins adopting the CloakCoin anonymization technology, PoSA3.

It is still, however, extremely important to the CloakCoin team to be as transparent as

possible, within this limitation. For this reason, a white paper2 has been released by the

CloakCoin team explaining in detail the mechanics of the PoSA3 algorithm and associated

transaction processes. The PoSA3 algorithm itself is thus public knowledge, and peer review

of this algorithm continues in the public eye.

It was determined that in addition to this, an internal audit of the codebase should be

performed, and that this process should be conducted in the open, although the codebase

itself cannot yet be opened.

The audit has been conducted by Iain Craig, a consultant to the CloakCoin development

team who has not been actively involved in the development of PoSA3.

Iain is known in the cryptocurrency community as Jonny Bravo. He is a degree-educated

professional developer with over 17 years of commercial experience in all aspects of

software development, as well as extensive expertise in network management and

penetration testing. He has been involved in the development of several altcoins and

numerous products and services in the cryptocurrency ecosystem and offers general

cryptocurrency consultancy services.

Iain is trusted by the CloakCoin team to fully examine the CloakCoin source code without

limitation, and was provided complete access to the CloakCoin team and developers while

conducting this audit. Not being directly involved in the development of the PoSA3 code has

allowed him to bring fresh eyes to the audit process.

1
 http://www.catb.org/esr/writings/cathedral-bazaar/

2
 http://cloakcoin.com/downloads/posa3wp.pdf

II. AIMS

It was the goal of this audit to examine and validate the current codebase in four core ways.

(1) Algorithmic accuracy: How closely the codebase adheres to its stated intentions, i.e.

how correctly and efficiently it implements the PoSA3 algorithm as presented in the

white paper.

(2) Algorithmic quality: How effective the PoSA3 algorithm is in achieving its objective of

anonymising transactions.

(3) Codebase quality: How well the implementation has been performed in terms of

efficiency, adhesion to general programming best practices, and consistency of style.

This latter item encompasses both consistency internal to the new work, and conformity

of the new work to its wider environment; i.e., how well it follows the pre-existing

practices already present in the pre-existing code. These practices may be by design, or

idiomatic.

(4) Codebase security: How secure the codebase is. This is examined with particular

attention to any potential backdoors in the wallet, whether accidentally or deliberately

placed, and to any potential new attack surface added to the wallet through

vulnerabilities introduced by the new work (again whether accidental or deliberate).

III. LIMITATIONS

It must be stressed that this is an internal audit. Therefore the conclusions drawn, while

made by a consultant to the team, are ultimately those of the team itself; therefore this

audit does not remove the requirement for end users to trust the CloakCoin team.

Note that a thorough examination of the security and effectiveness of the PoSA3 algorithm

itself is out of the scope of this audit. This protocol is publically available and described in

the white paper; an ongoing process of peer review continues to examine the algorithm and

offer refinements and improvements, and indeed the current state of play of the white

paper has been revised iteratively during this process. Therefore, Aim 2 above is addressed

mostly by the peer review process rather than this audit.

Note also that Mac binaries were not built and tested as part of this audit.

Finally, please note that this audit concentrated primarily on the new code introduced by

the PoSA3 work, rather than the (publically available) codebase prior to the current

CloakCoin team taking over maintenance of the code.

IV. METHODOLOGY

Each aim above required the use of different toolsets and analysis techniques, albeit with

much overlap between the aims.

A fundamental technique employed was manual source code analysis. As it was the

intention to focus specifically on all new work performed since the current CloakCoin team

took over maintenance of the codebase, a series of milestone snapshots of the codebase

were decided upon, with a principle methodology being to compare the source code

differences between these snapshots. The snapshots used were as follows:

Snapshot A: The last public source release of CloakCoin before the current team took over

maintenance. This remains available at

https://github.com/CloakCoin/CloakCoinRelaunch/commit/9f318b895ebd7babc9324475d53

9d79c33764bc4.

Snapshot B: The WIP PoSA1 development branch as handed over by previous maintainer

Alty. Note: This was presented in a highly incomplete state and was never publically released

by Alty.

Snapshot C: The WIP PoSA3 development branch as handed over by Alty. This too was

presented in an unfinished state and was never publically released.

Snapshot D: CloakCoin PoSA3 Beta 1 (Internal codename cpa3-1.9.7.46)

Snapshot E: CloakCoin PoSA3 RC1 (Internal codename cpa3-RC1)

As well as tracking the source code differences from snapshot to snapshot, the evolution of

the PoSA3 algorithm itself, as documented in various internal and public versions of the

whitepaper, was tracked in parallel to check for divergence of one from the other.

In addition to extensive manual source code review, binary analysis of Snapshot D and

Snapshot E was performed.

This involved hosting compiled binaries on VMware virtual machines running Windows 7 and

Linux (vanilla Debian Squeeze). The binaries were hence placed in a sandbox environment

where all filesystem and network activity could be monitored, as well as all system calls

invoked by the running wallets. Tools used to monitor the behaviour of the binaries included

Wireshark3, Sysmon4, API Monitor5 and Process Monitor6 on Windows. Tools used for the

same on Linux were strace7, tcpdump8, iptraf9 and FAM10.

3
 https://www.wireshark.org/

4
 https://technet.microsoft.com/en-gb/sysinternals/dn798348

5
 http://www.rohitab.com/apimonitor

6
 https://technet.microsoft.com/en-gb/sysinternals/bb896645

7
 http://sourceforge.net/projects/strace/

https://github.com/CloakCoin/CloakCoinRelaunch/commit/9f318b895ebd7babc9324475d539d79c33764bc4
https://github.com/CloakCoin/CloakCoinRelaunch/commit/9f318b895ebd7babc9324475d539d79c33764bc4

For some tests, the binaries were allowed to connect to a closed testnet comprised of 4

identical clients on virtual machines, able to connect to each other but with no connection

to the outside world.

As well as behavioural monitoring of the binaries, other binary analysis performed included

the use of the Valgrind11 framework to check memory management and threading issues,

with particular attention to memory leaks.

Input fuzzing was used in attempts to break the binary wallet, subvert its state or expose any

vulnerable attack surface. Particular attention was paid to attempting to overrun buffers,

and inject malformed packets.

In analysing the PoSA3 algorithm itself, state diagrams and entity modelling were used. In

order to ascertain how closely the codebase implements PoSA3, cflow12 and gprof13 were

used to generate call graphs and examine functional dependencies.

8
 http://www.tcpdump.org/

9
 http://iptraf.seul.org/

10
 http://oss.sgi.com/projects/fam/faq.html

11
 http://valgrind.org

12
 http://www.gnu.org/software/cflow/

13
 http://www.gnu.org/software/binutils/

V. FINDINGS & RECOMMENDATIONS

1. Algorithmic accuracy

Taking the white paper as a specification, the algorithm is implemented exactly as described.

In white paper sections 2.2, the algorithm is presented as a set of discrete steps. Each step

presented can be traced to a reasonably discrete block of code in the codebase. There are

no unexplained extra steps taken in the code; the algorithm described in the white paper is

fully implemented as given.

No issues were found in this area, and no recommendations are made.

2. Algorithmic quality

As described, the fact that the white paper detailing the PoSA3 algorithm is publically

available allows for proper peer review of the PoSA3 anonymization techniques. It is felt that

this is the best way to prove the algorithm itself, completely in the open and subject to

analysis by any interested party.

However it is the opinion of the auditor that the PoSA3 algorithm as presented in the white

paper is effective at concealing the sender and recipient of a coin transfer in a “trustless-

anonymous” fashion, to use the terminology of the paper.

This is borne out by extensive process modelling and demonstrative testing, both in a closed

system during the audit process and as part of the development lifecycle within the

CloakCoin team. Both internal and invitee-only testing phases, and ultimately a public beta

testing phase, have shown that it is impossible to pick out the senders and recipients of

transactions by scrutinising the blockchain.

Furthermore, the issues with participant trust in the predecessor to PoSA3 (the PoSA1

algorithm) have in the opinion of the auditor been resolved. The combination of all inputs

and outputs into a single transaction is an elegant solution to the threat of bad actor

participants in the cloaking process.

That being said, there are a small number of areas which the auditor feels could be

improved. These are laid out below. However, it must be stated that these are in no way

issues that break the PoSA3 process; rather, they are recommendations for refinements and

improvements that improve the workflow and overall success rate, and provide for yet

further anonymization of transactions.

ISSUE 1: Unencrypted initial announcement causing potential leak of Session Public

Key

Explanation: PoSA3 nodes joining the network currently send their initial PoSA3

announcement (containing the Session Public Key) using the standard CloakCoin messaging

channel, rather than Onion Routing over the secure encrypted CloakShield channel. This is

due to CloakShield and Onion Routing not being available at the moment when a new node

joins the PoSA3 network; the node is not yet connected to other PoSA3 peers and therefore

cannot participate initially in secure communications. The need to securely route the initial

PoSA3 announcement using CloakShield and CloakShield's requirement of already being

connected to PoSA3 peers are currently mutually exclusive.

Recommendation: PoSA3 broadcasts could initially be flagged as ‘not available for cloaking’

so they can negotiate securely with nodes currently on the PoSA3 network to initially

connect, as this process directly leaks their Session Public Key due to onion routing not being

available at initial connection (not enough PoSA3 nodes). To mitigate this, the initial

broadcast could be discarded as soon as the node has connected to enough PoSA3 nodes to

securely onion route. The initial PoSA3 announcement can then be left to expire and be

superseded by a new announcement (now flagged as ‘available for cloaking’) which is onion-

routed out across the PoSA3 network. This would allow the node to facilitate onion routing

with the initial announcement without leaking details by not participating in PoSA3 Cloaking

operations with those initial credentials.

ISSUE 2: Lack of CloakShield receipt messages

Explanation: Nodes that receive, decrypt and decode a CloakShield packet successfully do

not send a receipt back to the sender. This reduces the scope for successfully detecting

failed onion routing attempts (due to PoSA3 routing nodes dropping offline) and does not

allow the message to be resent using an alternate route.

Recommendation: Peers should send a response to indicate that they have successfully

received a CloakShield message. This can then be used to circumvent any onion routing

issues and allow the sender to automatically resend the message using a different route

when necessary.

ISSUE 3: Potential for additional PoSA status messages

Explanation: During the PoSA3 negotiation process, both the PoSA3 Sender and

participating Cloakers perform a series of checks on the inputs and outputs that comprise a

PoSA3 transaction. If any of the participating parties detects an anomaly, they immediately

cease their participation in the PoSA3 transaction, effectively aborting and voiding the

PoSA3 transaction, which leaves the Sender needing to manually retry the send.

Recommendation: Additional PoSA3 negotiation messages could be added to indicate that:

a. A participating node sent bad input/output data and Sender needs to dismiss

the Cloaker and use a replacement peer. In this instance, the Sender would re-

broadcast the request advertising availability for new participants or use a

previously cached PoSA3 acceptance from a potential Cloaker.

b. A Cloaker received a PoSA3 transaction for signing which failed the validity

checks. In this instance, the Cloaker would inform the Sender of the issue and

Sender can automatically amend or recreate the PoSA3 transaction for signing.

In this scenario the Cloaker could penalize the Sender with a DoS penalty.

c. The finalized PoSA3 transaction failed validation after signing due to an

attempted ‘double spend’ which caused the network to reject the PoSA3

transaction. The existing validation code in the PoSA3 framework will allow the

Sender to identify which Cloaker supplied the bad inputs/outputs. In this

instance, the Sender would re-broadcast the request advertising availability for

new participants and could penalize the Cloaker at fault with a DoS penalty.

ISSUE 4: No re-negotiation of failed PoSA3 transfer

Explanation: If a PoSA3 transfer fails due to a participant aborting or failing to respond,

there is currently no methodology in place to automatically re-negotiate the creation of a

PoSA3 transaction. Adding this functionality would circumvent the need for manual re-

sending of failed PoSA3 transactions and provide a much smoother user experience for the

PoSA3 process.

Recommendation: This recommendation is covered by the additional messages outlined in

ISSUE 3: Potential for additional PoSA status messages above.

3. Codebase quality

The PoSA3 implementation has been done extremely well. The new PoSA3 code perfectly

follows the style of the pre-existing code, from aspects such as brace style and variable

naming conventions through to the higher level philosophy. The level of commenting is

good, and classes and members are logically named.

In particular the new code does a good job of not “reinventing the wheel”; where goals can

be accomplished using existing features of the codebase, these features have been utilised

well.

A good example of this is the networking subsystems to facilitate PoSA3 transactions;

particularly in the case of the CloakShield subsystem (see white paper). Additional code has

been required to implement the ECDH key exchange and RSA stream cypher system. This is

done in a very sympathetic way, using existing functions to perform these tasks where

possible and importing a minimum of library code.

Only two issues were identified in this area, as follows.

ISSUE 5: Missing public key validation

Explanation: The generation of the EDCH shared secret involves the public key submitted by

a PoSA3 node. This public key is not validated, and a possible attack vector is exposed. The

client can currently be crashed by malformed public keys; it’s unclear whether there is a

potential for code injection but this is a possibility. In any case, a DDoS attack against the

network would be possible by a malicious client deliberating sending malformed public keys

and forcing recipient nodes offline.

Recommendation: Check the public keys received from PoSA3 nodes are valid before

generating the ECDH shared secret.

ISSUE 6: Incorrect locking of ‘Stake’ and ‘PoSA Processing’ funds

Explanation: It has been noted that the system in place for reserving coins in the wallet for

staking and PoSA3 participation will occasionally reserve too many coins for staking.

Recommendation: This is a trivial code fix in the coin reservation subsystem.

4. Codebase security

This really encompasses two facets. Firstly, is the code implemented in such a way as to not

create any additional attack surface area on the application? Secondly, can the developer be

trusted to not deliberately create any backdoors?

The codebase was analysed with both these aspects in mind. It was checked that all

allocated buffers are of appropriate size and, crucially, include bounds checking.

Furthermore, fuzzing testing ascertained that the code robustly handles malformed packets

and other malformed testing. The only exception to this is noted in section 2 above, under

“Missing Public Key Validation”.

Although Boost smart pointers or a similar system can be used within a codebase in order to

enforce correct object dereferencing, this technique is not used within the PoSA3 or wider

CloakCoin code. This is often suggested as a best practice, but in the view of the auditor is

not required in this case. Memory management is robustly handled by the base code and

the new PoSA3 code; Valgrind was used to determine that there are no memory leaks, and

retrofitting such a deep change would require touching a vast amount of base code which is

already known to work correctly. For this reason, introducing smart pointers is not

recommended in the case of the CloakCoin codebase.

Through manual code analysis, as well as behavioural analysis of the compiled Windows and

Linux binaries, it can be stated with a very high degree of confidence that there is no

malicious code in the codebase. Manual analysis alone is not considered by the auditor to be

sufficient to make such a claim; obfuscated code can be inserted into a codebase by a skilled

programmer and split up in such a way as to appear completely innocuous. In the case of a

complex application, and particularly an application which depends for a large part on

network –related code, malicious code can hide from view even when one is able to survey a

fully expanded call graph.

For this reason, the binaries were monitored in order to observe all system calls, all network

packets and all filesystem access. The tools used are outlined in the methodology presented

above. Please note that this binary analysis was conducted having first determined that the

codebase does not contain any code to check whether the application is executing inside a

virtual machine.

It was found that no files are touched apart from the CloakCoin wallet and associated config

and cache files; no spurious network packets are generated; no back doors are opened on

the local machine; no inexplicable listening ports are opened; no suspicious system calls are

seen.

Absolutely nothing untoward, nor out of keeping with the mechanics of PoSA3 transactions,

was observed from this binary analysis.

No recommendations resulted from examination of codebase security, although it could be

argued that the recommendation of public key validation given above partially falls under

this category.

